
Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Accelerating FUN3D on Hybrid Many-Core
Architectures

Austen C. Duffy

National Institute of Aerospace

August 3, 2010

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

This work is with

Dana Hammond - NASA Langley Research Center,
Computational Aerosciences Branch

Eric Nielsen - NASA Langley Research Center, Computational
Aerosciences Branch

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Outline

1 Introduction
GPU Computing Background
Related Work

2 Accelerating FUN3D

3 Test Problems

4 Results
Timing - Speedup
Scaling
Discussion

5 Conclusion

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Introduction

The Age of Hybrid Computing

High performance computing systems are undergoing a rapid shift
towards the coupling of add-on hardware, such as graphics processing
units (GPUs), Cell processors, and field programmable gate arrays
(FPGAs), with traditional multicore CPU’s.

These emerging systems are referred to as ’hybrid’ or ’heterogeneous’
computing architectures, the hardware components are referred to as
’accelerators’ or ’application accelerators’

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Pros and Cons

Hybrid architectures benefit from

Additional fine grain parallelism at the node level

Better price to performance ratios (1 TFLOP peak from a single
GPU)

Lower energy consumption per TFLOP

But software applications require

Special (and perhaps more difficult) coding

Abundant parallelism

Efficient ways to share limited add on resources

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Energy Efficiency

The top 8 computers on the June 2010 Green 500 list are all hybrid
architectures

Accelerator-based supercomputers on The Green500 List have
average efficiency of 554 MFLOPS/W

Traditional supercomputers average efficiency is at a much lower
181 MFLOPS/W.

The top 3 use a combination of Cell processors and FPGAs, with
no traditional CPUs

http://www.green500.org/lists.php

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Emerging Challenges

Developing efficient algorithms for hybrid clusters - Ground up
approach

Updating old software to make best use of newly available
hardware - Accelerator Models

Models for sharing a single GPU among multiple CPU cores

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Notable Hybrid HPC’s

As of June 2010, these hybrid computers ranked among the 10
fastest in the world.

#2 Nebulae - National Supercomputing Center in Shenzen,
China. 9280 Intel Xeon 6 core CPUs, 4640 Nvidia Tesla C2050
GPUs (numbers etimated)

#3 Roadrunner - Los Alamos. 6,480 AMD Opteron Dual Core
CPUs, 12,960 IBM PowerXCell 8i Cell Processors

#7 Tianhe-1 - National SuperComputer Center in Tianjin,
China. 6144 Intel Xeon dual core CPUs, 5120 ATI GPUs

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Emerging Trends for Hybrid Many-Core Clusters

Note that the older Tianhe-1 has a CPU core to GPU ratio of 2:1,
while the newer Nebulae is 12:1

As CPU manufacturers continue to add more cores per chip, the
number of CPU cores per GPU in a hybrid cluster will undoubtedly
continue to increase due to high cost and power consumption of
computational GPUs.

Cost: Intel Xeon X5670 6 core CPU costs about $1500, NVIDIA
Tesla C2050 GPUs are about $2300 each

Power: The X5670 requires 95W, each additional C2050 adds
250W

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

GPU Architectures

GPU architectures differ significantly from CPU architectures,
allocating chip space to many identical SIMD type functional units
optimized for graphics rendering, as opposed to many different
special purpose units found on CPUs. Until recently, GPUs have
suffered from

Lack of true L1 and L2 caches

Lack of double precision or slow DP when available

Limited accuracy

Serial kernel execution

bit flip errors (no ECC support)

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Memory Hierarchy

GPU memory layouts are slightly different than those in a cpu... in
order of fastest access speed we have

Registers: Fixed number per Streaming Multiprocessor (SM),
spills go to local memory if true cache absent

Constant Memory: Stored in Global, only fast when cached,
difficult to use properly

Shared Memory: Similar to L1 cache

Texture: Similar to L2 cache

Local: stored in global memory, just as slow

Global: Big, slowest, but still much faster than CPU memory

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

GPU Memory Access

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Latest Fermi Architecture

The latest generation GPU architecture from Nvidia, codenamed
’Fermi’, makes significant leaps in GPU computing capabilities

Better IEEE 754-2008 Compliance = More Accurate Results

Faster Double Precision (up to 8X)

Introduction of true L1 and L2 Caches

Concurrent Kernel Execution

ECC memory support

NVIDIA’s Next Generation CUDA Compute Architecture: Fermi.
Whitepaper, NVIDIA Corp. 2009

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

NVIDIA Fermi Chip

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Fermi Streaming Multiprocessor (SM)

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Differences between the latest CPUs and Fermi
GPUs

Fermi GPUs

Cores: 448-480 (512 in the future)

Execution Units: 1 FP, 1 INT

Tasks: Data Parallel

Threads: Thousands, lightweight, low overhead

32 cores per SM, which acts more like a CPU core

AMD and Intel CPUs

Cores: 6-12

Execution Units: Numerous, including FP, INT, ALU, SIMD

Tasks: All, highly robust

Threads: 6-12, heavy, significant overhead

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Relevant Quote

”I know how to make 4 horses pull a cart - I don’t know how to make
1024 chickens do it.”

- Enrico Clementi

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

So how can a GPU accelerate my code?

Fine Grain Data Parallelism

Most high end CFD codes are already optimized for large scale
’coarse grained’ parallel computation

Must seek fine grained data parallel tasks

If these opportunities exist, the code can benefit from
unprecedented levels of mass parallelism

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

GPU Programming Languages/Software

There have been numerous low level, difficult to program languages
over the years that left GPU computing almost entirely in the hands
of graphics programmers. Recent versions have brought GPU
computing to the mainstream.

OpenGL - Cross language graphics API, low level

CUDA C - Nvidia, C language with GPU extensions

CUDA Fortran - PGI wrapper for CUDA C

BrookGPU - Stanford University graphics group compiler, C
based w/ GPU extensions

Stream - AMD, based on BrookGPU

OpenCL - New cross platform language for GPUs and multicore
CPUs

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Fortran to CUDA

Since CUDA is just C with extensions for the GPU, the same mixed
language rules apply (remember reverse indexing)

Fortran A(i,j,k) → CUDA A[k*nx*ny+j*nx+i]

Fortran real(4),real(8) → CUDA float,double

Fortran integer(4) → CUDA int

Fortran function() → CUDA function_();

All arguments passed from Fortran are implicit pointers, but
must be declared as such explicitly on the CUDA side

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Simple CUDA Code Example: Vector Addition

Vector Addition in a parallel section of C code could look like

void vect_add(float *a, float *b, float *c, int N)
{

for (int i=0; i<N; i++){
c[i]=a[i]+b[i];

}
}

But with CUDA, you could launch N threads, and each thread
computes a single contribution in parallel on the GPU

__global__ void vect_add(float *a, float *b, float *c, int N)
{

int i = threadIdx.x;
c[i]=a[i]+b[i];

}

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

CUDA Kernels

A GPU function is referred to as a kernel. A kernel function is
executed in parallel by lightweight threads that are easily created
when the kernel starts and destroyed when it finishes. e.g. the kernel
call

vect_add <<<1,512>>> (a,b,512);

Launches 1 block of 512 threads to compute the vect_add kernel for
a 512 element array. We can have much more complex kernels, and
can use 3D arrays mapped to 1D arrays with three dimensional
thread indexing.

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Advanced CUDA Kernel

A more complex example of what CUDA kernels are capable of can
be found in Nvidia’s sharedABMultiply

__global__ void shABmult(float *A, float *B, float *C, int N)
{
__shared__ float aTile[TILE_DIM][TILE_DIM],

bTile[TILE_DIM][TILE_DIM];
int row = blockIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;
float sum =0.0f;
aTile[threadIdx.y][threadIdx.x] = A[row*TILE_DIM+threadIdx.x];
bTile[threadIdx.y][threadIdx.x] = B[threadIdx.y*N+col];
__syncthreads ();
for (int i = 0; i < TILE_DIM; i++){

sum += aTile[threadIdx.y][i] * bTile[i][threadIdx.x];
}
C[row*N+col] = sum;

}

NVIDIA CUDA Best Practices Guide. Version 3.0, 2/4/2010

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

CUDA Thread Blocks/Grids

Thread block sizes are 3 dimensional, grid sizes are 2 dimensional and
are numbered with threadIdx and blockIdx identifiers. Dimensions are
given by blockDim and gridDim

dim3 threads (8,8,4); // threadIdx .x --> 0-7, blockDim.x = 8
// threadIdx .y --> 0-7, blockDim.y = 8
// threadIdx .z --> 0-3, blockDim.z = 4

dim3 blocks (16 ,8 ,1); // blockIdx.x --> 0-15, gridDim.x = 16
// blockIdx.y --> 0-7, gridDim.y = 8

kernel <<<blocks ,threads >>> ();

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

CUDA Memory Copies

One must physically move data to the GPU with built in
cudaMalloc and cudaMemcpy

// Allocate memory for a device copy of ’A’ on GPU
cudaMalloc((void **)& A_device , sizeof(float)*N);

// Make copy of ’A’
cudaMemcpy(A_device ,A,sizeof(float)*N,cudaMemcpyHostToDevice);

...

// Copy back GPU updated ’A’
cudaMemcpy(A,A_device ,sizeof(float)*N,cudaMemcpyDeviceToHost);

// Free ’A_device ’
cudaFree(A_device);

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

CUDA Subroutine

Bringing it all together

extern C void fortran_to_cuda_(float *A, int *N)
{

cudaMalloc((void **)& A_device , sizeof(float)*N);
cudaMemcpy(A_device ,A,sizeof(float)*N,cudaMemcpyHostToDevice);

dim3 threads (8,8,4);
dim3 blocks (16 ,8 ,1);
kernel <<<blocks ,threads >>> (A,N);

cudaMemcpy(A,A_device ,sizeof(float)*N,cudaMemcpyDeviceToHost);
cudaFree(A_device);

}

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

A Note on Realistic Speedup Expectations

GPU performance results have shown multiple orders of magnitude
speedup for some problems. In a realistic high performance CFD
setting these numbers will be rather difficult to achieve. Reasons for
this include

Quality CFD codes don’t typically use dense linear algebra,
slower converging embarrassingly parallel iterative solvers (e.g.
Jacobi) or fully explicit solvers with small time step constraints.
These algorithms will see the biggest performance gains on a
GPU.

CFD codes are typically run in parallel and hence require
external communication, necessitating large numbers of costly
CPU-GPU data transfers. This also means that complete
iterative solves cannot be entirely completed on the GPU

High end codes are highly optimized for a CPU, providing less
opportunity for dramatic speedup.

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Related Work

GPU acceleration has been extensively studied in numerous areas of
computational science, engineering and finance. Some notes relevant
here

Most works to date have only considered single core - single
GPU scenarios

Many avoid the use of double precision

Limited research has been done with high end CFD codes on
GPU clusters

No works to date have considered GPU sharing

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Unstructured-Compressible

A. Corrigan, F. Camelli, R. Lohner, J. Wallin, Running unstructured
grid based CFD solvers on modern graphics hardware, in: 19th AIAA
CFD Conference, San Antonio, Texas, USA.

Unstructured compressible Euler solver

Explicit Runge-Kutta time stepping scheme

Supersonic missile and wing test problems

Averaged about 33X speedup single precision, 6X double with a
Tesla C1060 over a single CPU core

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Structured-Compressible

E. Elsen, P. LeGresley, E. Darve, Large calculation of the flow over a
hypersonic vehicle using a GPU, J. Comp. Phys. 227 (2008)
10148-10161.

Block structured compressible Euler, explicit Runge-Kutta

Used BrookGPU with texture memory

Hypersonic wing and vehicle test problems

Achieved 15-40X speedup SP with -O2 optimization for 8800
GTX over a single CPU core

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

NASA OVERFLOW

D. C. Jesperson, Acceleration of a CFD Code with a GPU, NAS
Technical Report NAS-09-003, NASA Ames Research Center, 2009.

Structured RANS, Implicit SSOR

Only considered 1 CPU core, 1 GPU, NO MPI

Replaced 64 bit SSOR with a 32 bit Jacobi method on GPU

Achieved 2.5-3X speedup (SP) using GTX 8800 and Tesla
C1060 over a single CPU core

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

CFD on GPU Clusters

E. H. Phillips, Y. Zhang, R. L. Davis, J. D. Owens, Rapid
aerodynamic performance prediction on a cluster of graphics
processing units, in: Proceedings of the 47th AIAA Aerospace
Sciences Meeting, Orlando, Florida, USA.

Compressible structured MBFLO code

88X over 1 core for a compressible block structured solver on 16
GPU cluster

D. Jacobsen, J. Thibault, I. Senocak, An MPI-CUDA implementation
for massively parallel incompressible flow computations on multi-GPU
clusters, in: 48th AIAA Aerospace Sciences Meeting, Orlando,
Florida, USA.

Incompressible, Jacobi iterative solver for projection step

130X speedup over 8 cpu cores on a 128 Tesla C1060 cluster

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Finite Elements on GPU clusters

D. Göddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, S. H.
Buijssen, M. Grajewski, S. Turek, Exploring weak scalability for FEM
calculations on a GPU enhanced cluster, Parallel Computing 33
(2007) 685-699.

D. Göddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, H. Wobker,
C. Becker, S. Turek, Using GPUs to improve multigrid solver
performance on a cluster, International Journal of Computational
Science and Engineering 4 (2008) 36-55.

D. Göddeke, S. H. Buijssen, H. Wobker, S. Turek, GPU acceleration
of an unmodified parallel finite element Navier-Stokes solver, in: High
Performance Computing and Simulation 2009, Leipzig, Germany.

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Outline

1 Introduction
GPU Computing Background
Related Work

2 Accelerating FUN3D

3 Test Problems

4 Results
Timing - Speedup
Scaling
Discussion

5 Conclusion

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

FUN3D Background

Unstructured Navier-Stokes, all flow regimes, adjoint, design
optimization

Used by Boeing, Lockheed, DoD and SpaceX, among others

Started out as an unstructured fluids research code in the late
1980’s

Has evolved into a production level status code

http://fun3d.larc.nasa.gov

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

FUN3D Numerical Methods

Node Based Finite Volume Scheme

Colored Gauss-Seidel (GS) Point Implicit Solver

Grid partitioning done with Metis and ParMetis 1

1G. Karypis, V. Kumar, Multilevel k-way partitioning scheme for
irregular graphs, J. Parallel Distrib. Comput. 48 (1998) 96-129.

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

FUN3D Scaling

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Accelerator Model w/ Distributed GPU Sharing

Accelerator Model: Port a relatively small piece of CPU code
containing a high level of data parallelism to GPU code

We have inserted various CUDA C subroutines into the FUN3D
point_solve_5 (PS5) subroutine which replace the CPU
computation when an appropriate GPU is available.

These new routines are capable of sharing a GPU which receives
distributed work in parallel from each thread.

Our distributed GPU sharing model is a novel concept

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Colored GS Iteration

The colored GS point_solve iterations generally resemble

for color = 1 to maxcolor sweeps do
// Do RHS 5x5 solve on color
b(:) = residual(:)
for n = start to end do

1. Compute off diagonal contributions
for j = istart to iend do

bi = bi − Σi 6=jAi,j ∗ xicol (SP)
end for
2. Compute 5x5 forward solve (DP)
3. Compute 5x5 back solve (DP)
4. Compute sum contribution, update RHS (MP)

end for
// End color, do MPI communication
MPI xfer

end for

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

GPU Mapping

To map PS5 to the GPU, we simply let n parallel threads replace the
sequential RHS solve via a kernel function

for color = 1 to maxcolor sweeps do
// Launch n/8+1 blocks of 8 threads
ps5_kernel <<<n/8+1,8>>> ();
// End color, do MPI communication
MPI xfer

end for

We have replaced a sequential loop of n iterations with n parallel
thread computations. n is in the 10,000’s to 100,000’s for our
problems.

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

CUDA Subroutines

gs_gpu : The first subroutine is for a straightforward 1 core - 1
GPU setup where the entire GS solve is done in CUDA.

gs_mpi0 : This case is identical to that above in terms of the
GPU kernel, however, it assumes that an MPI communication is
required at the end of each color.

gs_mpi1 : This subroutine is the first to consider the effects of
GPU sharing, by attempting to reduce the kernel size and
distribute a small portion of the workload to the CPU.

gs_mpi2 : The final subroutine was designed to execute with
many threads sharing a single GPU. It shares a substantial
amount of computation with the CPU, and also eliminates all
double precision calculations from the GPU side.

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Outline

1 Introduction
GPU Computing Background
Related Work

2 Accelerating FUN3D

3 Test Problems

4 Results
Timing - Speedup
Scaling
Discussion

5 Conclusion

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Test Problem 1

Simple wing-body geometry originating from the LaRC vgrid/tetruss
training. It is a pure tetrahedral grid, with triangular boundary faces.

339206 Nodes

1995247 Cells

37834 Boundary Faces

Node Partitioning:
Proc # 1 Core 2 Cores 4 Cores 8 Cores

0 339206 168161 85339 42824
1 171045 84626 40608
2 84861 42828
3 84380 42622
4 42555
5 42525
6 42726
7 42518

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Test Problem 1 - Grid

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Test Problem 1 - GPU Pres Solution

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Test Problems 2 and 3

These test problems are used strictly for their node sizes in order to
test PS5 run times, limited information will be given.

Test Problem 2: DLR-F6, 650,000 Nodes

Test Problem 3: Wing Leading-Edge, 900,000 Nodes

Node partitioning distributions are comparable to problem 1

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Test Problem 4

DLR-F6 Wing-Body Configuration from the second international
AIAA Drag Prediction Workshop (DPW-II)

1,121,301 Nodes

6,558,758 Cells

674,338 Viscous Nodes

3,826,019 Viscous Cells

E. Lee-Rausch, N. Frink, D. Mavriplis, R. Rausch, W. Milholen,
Transonic drag prediction on a DLR-F6 transport configuration using
unstructured grid solvers, Computers & Fluids 38 (2009) 511-532.

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Test Problem 4 - Grid

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Test Machines

GTX 480 WS: Intel Xeon 5080 Workstation, NVIDIA GTX 480

CPU: 2 x 2 core @ 3.73 GHz, 2 MB L2

GPU: 1 x 480 core @ 1.4 GHz, 1.6 GB Global Memory

GTX 470 BC: AMD Athlon II Beowulf Cluster, NVIDIA GTX 470

CPU: 2 x 4 core @ 2.6 GHz, 2 MB L2

GPU: 2 x 448 core @ 1.25 GHz, 1.26 GB Global Memory

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Outline

1 Introduction
GPU Computing Background
Related Work

2 Accelerating FUN3D

3 Test Problems

4 Results
Timing - Speedup
Scaling
Discussion

5 Conclusion

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Considerations For The Following Timing Results

Limited GPU memory size prevents testing with large problem
sizes on a single GPU, must distribute across multiple

For GTX 470 BC, scaling comparisons should be made in a node
to node fashion, as cache space and GPU:CPU ratio are
preserved

There are GPU-CPU memory copy costs external to the CUDA
C subroutines. These are included in the overall FUN3D time.

GeForce series cards have detuned double precision capabilities,
substantially slowing down gs_gpu, mpi0, and mpi1

Both Fortran and CUDA compiled with -O2 optimizations

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

FUN3D Times

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

FUN3D Times

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

FUN3D Times

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

FUN3D Speedup

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Test Problem 1 - gs gpu

GTX 480 WS

gs_gpu CPU Cores CPU Time CPU/GPU Time Speedup
FUN3D 1 1732.8 s 794.1 s 2.182X

PS5 1 0.455 s 0.082 s 5.549X

GTX 470 BC

gs_gpu CPU Cores CPU Time CPU/GPU Time Speedup
FUN3D 1 1728.9 s 860.5 s 2.001X

PS5 1 0.437 s 0.092 s 4.750X

FUN3D = overal FUN3D wall clock time
PS5 = CPU time for 1 sweep of PS5 solver

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Test Problem 1 - gs mpi0

GTX 480 WS - gs_mpi0 Cores CPU CPU/GPU Speedup
FUN3D 1 1732.8 s 1026.5 s 1.688X

PS5 1 0.455 s 0.170 s 2.676X
FUN3D 2 850.6 s 744.5 s 1.143X

PS5 2 0.216 s 0.164 s 1.317X
FUN3D 4 496.0 s 648.1 s 0.758X

PS5 4 0.125 s 0.167 s 0.727X

FUN3D = overal FUN3D wall clock time
PS5 = CPU time for 1 sweep of PS5 solver

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Test Problem 1 - gs mpi0 - GTX 470 BC

1 Node (1 GPU)

gs_mpi0 Cores CPU CPU/GPU Speedup
FUN3D 1 1728.9 s 1137.1 s 1.568X

PS5 1 0.437 s 0.197 s 2.218X
FUN3D 2 963.9 s 882.15 s 1.093X

PS5 2 0.240 s 0.193 s 1.244X
FUN3D 4 674.3 s 786.5 s 0.857X

PS5 4 0.172 s 0.197 s 0.873X

2 Nodes (2 GPUs)

gs_mpi0 Cores CPU CPU/GPU Speedup
FUN3D 2 888.1 s 596.2 s 1.490X

PS5 2 0.221 s 0.104 s 2.125X
FUN3D 4 498.8 s 482.9 s 1.033X

PS5 4 0.121 s 0.104 s 1.163X
FUN3D 8 366.0 s 441.6 s 0.829X

PS5 8 0.088 s 0.109 s 0.807X

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Test Problem 1 - gs mpi1

GTX 480 WS - gs_mpi1 Cores CPU CPU/GPU Speedup
FUN3D 1 1732.8 s 912.0 s 1.900X

PS5 1 0.455 s 0.128 s 3.555X
FUN3D 2 850.6 s 626.4 s 1.358X

PS5 2 0.216 s 0.118 s 1.831X
FUN3D 4 496.0 s 528.1 s 0.939X

PS5 4 0.125 s 0.123 s 1.016X

FUN3D = overal FUN3D wall clock time
PS5 = CPU time for 1 sweep of PS5 solver

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Test Problem 1 - gs mpi1 - GTX 470 BC

1 Node (1 GPU)

gs_mpi1 Cores CPU CPU/GPU Speedup
FUN3D 1 1728.9 s 1011.7 s 1.709X

PS5 1 0.437 s 0.149 s 2.933X
FUN3D 2 963.9 s 754.7 s 1.277X

PS5 2 0.240 s 0.142 s 1.690X
FUN3D 4 674.3 s 669.0 s 1.008X

PS5 4 0.172 s 0.148 s 1.162X

2 Nodes (2 GPUs)

gs_mpi1 Cores CPU CPU/GPU Speedup
FUN3D 2 881.1 s 522.2 s 1.687X

PS5 2 0.221 s 0.080 s 2.763X
FUN3D 4 498.8 s 405.2 s 1.231X

PS5 4 0.121 s 0.079 s 1.532X
FUN3D 8 366.0 s 369.3 s 0.991X

PS5 8 0.088 s 0.082 s 1.073X

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Test Problem 1 - gs mpi2

GTX 480 WS - gs_mpi2 Cores CPU CPU/GPU Speedup
FUN3D 1 1732.8 s 845.7 s 2.049X

PS5 1 0.455 s 0.104 s 4.375X
FUN3D 2 850.6 s 543.5 s 1.565X

PS5 2 0.216 s 0.087 s 2.483X
FUN3D 4 496.0 s 438.3 s 1.132X

PS5 4 0.125 s 0.092 s 1.359X

FUN3D = overal FUN3D wall clock time
PS5 = CPU time for 1 sweep of PS5 solver

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Test Problem 1 - gs mpi2 - GTX 470 BC

1 Node (1 GPU)

gs_mpi2 Cores CPU CPU/GPU Speedup
FUN3D 1 1728.9 s 908.1 s 1.904X

PS5 1 0.437 s 0.113 s 3.867X
FUN3D 2 963.9 s 651.4 s 1.480X

PS5 2 0.240 s 0.105 s 2.286X
FUN3D 4 674.3 s 548.3 s 1.230X

PS5 4 0.172 s 0.109 s 1.578X

2 Nodes (2 GPUs)

gs_mpi2 Cores CPU CPU/GPU Speedup
FUN3D 2 881.1 s 478.8 s 1.840X

PS5 2 0.221 s 0.061 s 3.623X
FUN3D 4 498.8 s 348.4 s 1.432X

PS5 4 0.121 s 0.059 s 2.051X
FUN3D 8 366.0 s 315.8 s 1.159X

PS5 8 0.088 s 0.063 s 1.397X

FUN3D = overal FUN3D wall clock time
PS5 = CPU time for 1 sweep of PS5 solver

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Test Problem 2 - gs gpu

GTX 480 WS:

gs_mpi2 Cores CPU CPU/GPU Speedup
PS5 1 0.851 s 0.155 s 5.490X

GTX 470 BC:

gs_mpi2 Cores CPU CPU/GPU Speedup
PS5 1 0.822 s 0.174 s 4.724X

PS5 = CPU time for 1 sweep of PS5 solver

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Test Problem 2 - gs mpi2

GTX 480 WS:

gs_mpi2 Cores CPU CPU/GPU Speedup
PS5 1 0.851 s 0.189 s 4.503X
PS5 2 0.402 s 0.152 s 2.645X
PS5 4 0.237 s 0.155 s 1.529X

PS5 = CPU time for 1 sweep of PS5 solver

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Test Problem 2 - gs mpi2 - GTX 470 BC

1 Node (1 GPU)

gs_mpi2 Cores CPU CPU/GPU Speedup
PS5 1 0.822 s 0.215 s 3.823X
PS5 2 0.449 s 0.198 s 2.268X
PS5 4 0.332 s 0.197 s 1.685X

2 Nodes (2 GPUs)

gs_mpi2 Cores CPU CPU/GPU Speedup
PS5 2 0.407 s 0.120 s 3.392X
PS5 4 0.223 s 0.112 s 1.991X
PS5 8 0.165 s 0.115 s 1.435X

PS5 = CPU time for 1 sweep of PS5 solver

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Test Problem 3 - gs mpi2

GTX 480 WS:

gs_mpi2 Cores CPU CPU/GPU Speedup
PS5 1 1.140 s 0.257 s 4.436X
PS5 2 0.558 s 0.213 s 2.620X

GTX 470 BC - 2 Nodes (2 GPUs)

gs_mpi2 Cores CPU CPU/GPU Speedup
PS5 2 0.564 s 0.213 s 2.648X
PS5 4 0.316 s 0.179 s 1.765X
PS5 8 0.230 s 0.168 s 1.369X

* M1: GPU Memory is insufficient for sharing among 4 threads, M2:
Problem must be split across two GPUs

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Test Problem 3 - gs mpi2

GTX 480 WS - 2 Nodes:

gs_mpi2 Cores CPU CPU/GPU Speedup
PS5 4 0.411 s 0.195 s 2.108X
PS5 8 0.299 s 0.189 s 1.582X

PS5 = CPU time for 1 sweep of PS5 solver

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Strong Scaling - 340,000 Nodes

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Strong Scaling - All

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Pseudo-Weak Scaling - Points per node

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Discussion

FUN3D can be accelerated with up to 4 processor cores sharing
a single low price GeForce series GPU

We expect better acceleration with more cores per processor on
a Tesla C2050 (much faster DP)

For each additional core, there is a reduction in available
memory of approximately 66 MB

For problem 3, a GTX 480 runs out of memory when attempting
to go from 2 to 4 cores per GPU with gs_mpi2

Lack of a fast double precision GPU will require one to use the
gs_mpi2 routine in a parallel setting

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Discussion

The gs_gpu CUDA routine could benefit from moving the
sweeping steps to inside the PS5 subroutine, resulting in only 1
data transfer per iteration. We would expect to see a speed
increase of up to 7X for test problem 1, but it would only benefit
the single core case.

We have also tested problem 1 with gs_gpu on a GT 240 card
on the headnode of machine 2, which could only achieve 1.27X
speedup for PS5 in single precision

With data from only two nodes of the GTX 470 BC machine, it
appears that CPU/GPU times do not scale as well in the strong
sense as strict CPU times, but it looks like weak scaling may be
better.

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Discussion

What stops PS5 from realizing 100X speedup? We can use tens of
thousands of threads in a highly parallel fashion but...

Communication requirement forces additional CPU/GPU
memory transfers between colors and PS5 iterations - We need
much faster transfer speeds, either from improved PCI or some
new technology.

Unable to use fast shared memory - We will likely never
overcome this due to the unstructured nature of this code, and
relatively small shared memory space.

Need more cache space - GPU is working with 768 KB L2 total,
CPU has 512-1024 KB per core. GPUs can quickly catch up
here.

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Outline

1 Introduction
GPU Computing Background
Related Work

2 Accelerating FUN3D

3 Test Problems

4 Results
Timing - Speedup
Scaling
Discussion

5 Conclusion

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Numbers Summary

PS5 speedup of 4.5X to 5.5X with 1 GeForce GTX 480 GPU per
core

Overall FUN3D code speedup of 2X

Could be substantially higher with 20x20 block solves (higher
order methods)

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Conclusions

We have shown that distributed GPU sharing can be used as an
effective model when scaling on hybrid clusters

The need to communicate across processors forces additional
CPU-GPU data transfers, which severely limit performance gains

GPU memory size can be a limiting factor in particular
applications

Larger L1 and L2 cache sizes in future generations will improve
performance for unstructured codes

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Future Generation GPUs

In the next generation of CPUs and GPUs, we may see much more
substantial speedup for this code

GPU core growth should outpace that of CPU cores. GPU chips
are substantially larger than CPU chips and have more room to
shrink.

CPU cores will likely have lower clock speeds when they break
out into many-cores (see AMD’s 12 core Opteron)

CPUs will likely maintain current cache/core ratios, GPUs could
exceed theirs (next slide)

And ... hopefully we will have faster data transfer technology
(new PCI?) and/or global memory access (GDDR6?).

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Future Generation GPUs

Each generation of GPUs has provided more cores, larger ’cache’
sizes and faster memory access.

Arch. Cores L1 L2 Mem Acc.
G80 112 16 KB 1 128 KB 2 57.6 GB/s GDDR3

GT200 240 24 KB 1 256 KB 2 102 GB/s GDDR3
Fermi 448 48/16 KB 3 768 KB 144 GB/s GDDR5

G80 - Geforce 8800 GT

GT200 - Tesla C1060

Fermi - Tesla C2050
1 = shared memory, 2 = texture cache, 3 = configurable
L1/Shared memory

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Future Work - FUN3D

Testing on a Tesla C2050 card

Testing on a large hybrid cluster

Porting the other solvers (PS4, PS6, etc.) to CUDA (easy)

OpenCL porting (more difficult)

Move Jacobian computation to GPU (much more difficult)

Other routines, other accelerators (Cell Processors) ???

Accelerating
FUN3D on

Hybrid
Many-Core

Architectures

Austen C. Duffy

Introduction

GPU Computing
Background

Related Work

Accelerating
FUN3D

Test Problems

Results

Timing -
Speedup

Scaling

Discussion

Conclusion

Questions?

	Introduction
	GPU Computing Background
	Related Work

	Accelerating FUN3D
	Test Problems
	Results
	Timing - Speedup
	Scaling
	Discussion

	Conclusion

