
A GPU/Multi-core Accelerated Multigrid
Preconditioned Conjugate Gradient Method for

Adaptive Mesh Refinement

Austen Duffy - Florida State University

SIAM Conference on Computational Science and Engineering

March 2, 2011

Acknowledgements

This work is with

Mark Sussman - FSU Mathematics

And supported by the National Science Foundation through grant
DMS-1016381

Introduction

In this talk We will describe

A new method for computing the pressure projection step of our
coupled level set and volume of fluid (CLSVOF) code on adaptive
meshes using the multigrid preconditioned conjugate gradient
method.

Steps involving the GPU acceleration of the code.

Outline

1 Governing Equations for two-phase flow
Background and Related Work

2 Mathematical Formulation
An Improved Projection Algorithm for Adaptive Meshes
Restriction and Prolongation Operators
Convergence

3 Results and Discussion

4 GPU Acceleration

5 Microfluids Gallery

Governing Equations for two-phase flow

ρL
DuL

Dt
= −∇pL + 2µL∇ · D + ρLg, ∇ · uL = 0, x ∈ liquid,

ρg
Dug

Dt
= −∇pg + 2µg∇ · D + ρgg, ∇ · ug = 0, x ∈ gas,

D =
∇u + (∇u)T

2

Governing Equations for two-phase flow (cont)

Interfacial Conditions

(2µLD − 2µgD) · n = (pL − pg + σκ) n and uL = ug , x ∈ Γ,

uL = ug , x ∈ Γ

dx

dt
= u(x(t), t), x ∈ Γ

κ = ∇ · n, x ∈ Γ

Level set equations for multiphase flow.

Weak solutions of the following equations satisfy the interfacial boundary
conditions:

ρ
Du

Dt
= ∇ · (−pI + 2µD) + ρgz− σκ∇H

∇ · u = 0
Dφ

Dt
= 0 κ(φ) = ∇ · ∇φ

|∇φ|

H(φ) =

{
1 φ ≥ 0
0 φ < 0

ρ = ρLH(φ) + ρG (1− H(φ)) µ = µLH(φ) + µG (1− H(φ))

Y.C. Chang, T.Y. Hou, B. Merriman, and S. Osher, A Level Set
Formulation of Eulerian Interface Capturing Methods for Incompressible
Fluid Flows, J.Comput.Phys.,124 (1996), pp. 449-464.

Staggered grid discretization

The cell centered variables φi,j and pi,j are approximations to φ(xi , yj) and p(xi , yj)
respectively where xi = (i + 1/2)∆x and yj = (j + 1/2)∆y . The horizontal face centered
velocity, ufc

i+1/2,j , is an approximation to u(xi+1/2, yj) where xi+1/2 = (i + 1)∆x and

yj = (j + 1/2)∆y . The vertical face centered velocity, v fc
i,j+1/2, is an approximation to

v(xi , yj+1/2) where xi = (i + 1/2)∆x and yj+1/2 = (j + 1)∆y .

Projection method

1. Coupled level set and volume of fluid interface advection: Dφ
Dt = 0,

DF
Dt = 0.

2. Velocity advection: Du
Dt = 0, Ffc,advect =

(
ucc,∗−ucc,n

∆t

)c→f

3. Viscous force term (sub-cycling algorithm):

1 ucc,(0) = ucc,∗

2 For k = 1, . . .K ,
ucc,(k) = ucc,(k−1) + ∆t

K
1

ρcc (φn+1)∇ · (2µ(φn+1)D(k−1))

3 Ffc,visc =
(
ucc,(K)−ucc,(0)

∆t

)c→f

5. Project velocity:

Vfc = ufc,n + ∆t
(
Ffc,advect + Ffc,visc + gz− σκ∇H/ρ

)

∇ · 1

ρ
∇p =

1

∆t
∇ · Vfc

ufc,n+1 = Vfc −∆t
∇p

ρ

Pressure Poisson Equation

We will be concerned with the solution of the pressure Poisson equation

∇ · 1

ρ
∇p = F (1)

The phase density ρ is represented in liquid and gas phases by
ρ = ρLH(φ) + ρG (1− H(φ)), where H(φ) is a Heaviside function equal
to 1 in liquid and 0 in gas.

1D Discretization of Pressure Equation

1

ρi+ 1
2

pi+1 − pi

∆x
− 1

ρi− 1
2

pi − pi−1

∆x
= ∆xFi , (2)

MGPCG-AMR, 2D discretization of pressure equation

βi+1/2,j(pi+1,j − pi,j)− βi−1/2,j(pi,j − pi−1,j)+
βi,j+1/2(pi,j+1 − pi,j)− βi,j−1/2(pi,j − pi,j−1) = fi,j∆x2

Matrix for Pressure Projection Step

Solve ∇ · β∇p = f → Ax = b

a b d
c a b d

c a b .
. . . .

A = e . . . d
e . . .

. c a b
. c a b

e c a

a = −(βi+1/2,j + βi−1/2,j)− (βi,j+1/2 + βi,j−1/2)

b = βi+1/2,j c = βi−1/2,j d = βi,j+1/2 e = βi,j−1/2

Condition Number and Density Ratio

In multiphase flows, the condition number of the discretization matrix for
eqn. 1 grows with the density ratio. In this table, the condition number is
calculated for the discretization matrix of a 1D two phase flow in the
domain [0, 1] following eqn. 2, and with the phase interface occurring at
x = 0.25. The example flow has a density of 1 in the first phase on the
interval [0, 0.25) and α in a second phase on the interval (0.25, 1]. Values
represent a discretization with 256 grid points and were calculated in
MATLAB using the built in condition number function cond().

α 1 10−1 10−2 10−3 10−4 10−5

Density Ratio 1 10 102 103 104 105

Condition # 205 1.2 x 103 1.2 x 104 1.2 x 105 1.2 x 106 1.2 x 107

Introduction - Condition Number and Problem Geometry

The condition number of the discretization matrix is not as sensitive to
the problem geometry as it is to the density ratio. The corresponding
condition numbers for these figures are 6,132,300 (left), 1,861,000
(middle) and 2,548,900 (right) using a 2D version of discretization eqn. 2
on a 64 x 64 grid.

Other possible MG Approaches for Inc. Two Phase Flow

Klaus Stuben, Patrick Delaney, Serguei Chmakov, Algebraic
Multigrid (AMG) for Ground Water Flow and Oil Reservoir
Simulation

Ruge, J.W., Stuben, K., 1986. Algebraic Multigrid (AMG), in
.Multigrid Methods. (S. McCormick, ed.), Frontiers in Applied
Mathematics, Vol 5, SIAM, Philadelphia.

The Black Box Multigrid Numerical Homogenization Algorithm J.
David Moulton, Joel E. Dendy Jr., and James M. Hyman JCP 142,
(1998)

Wan and Liu, “A boundary condition capturing multigrid approach
to irregular boundary problems,” SIAM J. Sci. Comput., 2004.

Other possible MG Approaches for Inc. Two Phase Flow
(cont)

Mayo, “The fast solution of poisson’s and the biharmonic equations
in irregular domains,” SIAM J. Num. Anal., 1984.

Howell and Bell, “An adaptive-mesh projection method for viscous
incomopressible flow,” SIAM J. Sci. Comp., 1997.

Schaffer, A Semicoarsening Multigrid Method for Elliptic PDE’S
with Highly Discontinuous and Anisotropic Coefficients. SIAM J.
SCI. COMP., 1998.

PCG on Adaptive Grids

F. Losasso, R. Fedkiw, and S. Osher. Spatially adaptive techniques
for level set methods and incompressible flow. Comput. Fluids,
35(10):9951010, 2006.

F. Lossaso, F. Gibou, and R. Fedkiw. Simulating water and smoke
with an octree data structure. ACM Trans. Graph., 23:457462,
2004.

S. Popinet. Gerris: a tree-based adaptive solver for the
incompressible Euler equations in complex geometries. J. Comput.
Phys., 190(2):572600, 2003.

S. Popinet. An accurate adaptive solver for surface-tension-driven
interfacial flows. J. Comput. Phys., 228:5838-5866, 2009.

MG-MGPCG Algorithm for Adaptive Meshes

MG-MGPCG on level `+ 1 requires calculations at levels ` and `− 1

MG-MGPCG AMR Algorithm

Given x0, r = b − Ax0, x = x0, δx = 0
Repeat until ||r || < ε
1. Call relax!(δx, r , `max) on finest level
2. Let x = x + δx, r = r − A(δx)

Recursive Routine relax!(sol, rhs, `)
if Coarsest Level then

Solve exactly using MGPCG
else

(a) Presmoothing Step
for i = 1 to presmooth do

Smooth using MGPCG on level ` until ||r
`
|| < ε

10
end for
(b) Restriction Step

(i) restrict!(r) to covered level `− 1 cells and exposed level `− 1
cells neighboring a covered cell.

(ii) cor = 0
(c) Relaxation on Next Coarser Level

Call relax!(cor coarse , rhscoarse , `− 1)
(d) Prolongate the Correction to the present level l cells covering coarse
level `− 1 cells and one layer of ‘‘virtual" level ` cells.

sol = sol + I (cor)
(e) Postsmoothing Step
for i = 1 to postsmooth do

Smooth using MGPCG on level `
end for

end if

Improved MGPCG AMR Algorithm

Given x0, r = b − Ax0, x = x0, δx = 0
z = 0
Call relaxAMR(z , r , `max)
ρ = z · r
if n = 1 then

p = z
else
β = ρ

ρold

p = z + βp
end if
α = ρ

p·(Ap)
ρold = ρ
x = x + αp
r = r − αAp

Improved MGPCG AMR Algorithm (cont.)

Recursive Routine relaxAMR(sol, rhs, `)
if Coarsest Level then

Solve exactly using MGPCG
else

(a) Presmoothing Step
for i = 1 to presmooth do

Smooth using ILU on level `
end for
(b) Restriction Step

(i) restrict(r) to covered level `− 1 cells and recalculate r on exposed level `− 1 cells
neighboring a covered cell.

(ii) cor = 0
(c) Relaxation on Next Coarser Level

Call relaxAMR!(cor coarse , rhscoarse , `− 1)
(d) Prolongate the Correction to the present level ` cells covering coarse
level `− 1 cells and one layer of ‘‘virtual’’ level ` cells.

sol = sol + I (cor)
(e) Postsmoothing Step
for i = 1 to postsmooth do

Smooth using ILU on level `
end for

end if

MGPCG-AMR: Real and Fictitious Cells

Coarse and fine grid levels depicting real and fictitious cells

MGPCG-AMR: Restriction, Prolongation, Smoother

Restriction (real cells):

r `ic ,jc = r ell+1
if ,jf

+ r ell+1
if +1,jf

+ r ell+1
if ,jf +1 + r ell+1

if +1,jf +1

Restriction (fictitious cells):

r `ic ,jc = r ell+1
if ,jf

Prolongation (real cells):

p`+1
if ,jf

= p`ic ,jc p`+1
if +1,jf

= p`ic ,jc p`+1
if ,jf +1 = p`ic ,jc p`+1

if +1,jf +1 = p`ic ,jc

Prolongation (fictitious cells):

p`+1
if ,jf

= p`ic ,jc

Smoother (real cells):

pk+1 = pk + M(b − Apk)

Smoother (fictitious cells):

pk+1 = pk

Restriction Operator - Matrix Representation



1 0 · · · · · · · · · · · · · · · · · · 0
0 1
...

. . .
... 1 1 1 1
...

. . .

0 1





p`+1
1

p`+1
2
...

p`+1
i1

p`+1
i2

p`+1
i3

p`+1
i4
...

p`+1
N


=



p`1
p`2
...

p`i
...

p`N


(3)

Prolongation Operator - Matrix representation



1 0 · · · · · · · · · 0
0 1
...

. . .
... 1
... 1
... 1
... 1
...

. . .

0 1





p`1
p`2
...

p`i
...

p`N


=



p`+1
1

p`+1
2
...

p`+1
i1

p`+1
i2

p`+1
i3

p`+1
i4
...

p`+1
N


(4)

Convergence

The convergence conditions are the same as those for MGPCG

The MG smoother is symmetric

The restriction operator is the transpose of the prolongation operator

The matrix A in the smoothing step is symmetric

2D Test Problem

2D Test Problem Results

Blocking Factor 2 4 8
Adaptive Levels 1 3 5 1 3 5 1 3 5
ILU Smoother

PCG 0.659 5.424 63.49 0.563 3.359 35.54 0.365 2.875 26.78
MG 0.270 2.181 13.93 0.252 1.349 10.05 0.098 0.751 6.060
MGPCG 0.142 0.636 4.109 0.127 0.439 2.493 0.096 0.382 2.156
ICRB Smoother

PCG 0.653 5.366 69.49 0.567 3.561 39.02 0.377 3.012 25.53
MG 0.281 2.177 16.54 0.278 1.435 10.96 0.112 0.885 6.634
MGPCG 0.157 0.655 4.511 0.152 0.498 2.732 0.123 0.415 2.402
GSRB Smoother

PCG 0.641 5.706 65.99 0.567 4.037 37.72 0.364 3.014 29.26
MG 0.284 2.165 13.91 0.266 1.367 10.38 0.108 0.845 5.957
MGPCG 0.153 0.678 4.426 0.145 0.464 2.743 0.118 0.408 2.176

2D Test Problem Speedup

Blocking Factor 2 4 8
Adaptive Levels 1 3 6 1 3 6 1 3 6
ILU 1.91X 3.43X 3.39X 1.99X 3.07X 4.03X 1.01X 1.97X 2.81X
ICRB 1.79X 3.32X 3.67X 1.83X 2.88X 4.01X 0.91X 2.13X 2.76X
GSRB 1.86X 3.19X 3.14X 1.84X 2.95X 3.78X 0.92X 2.07X 2.74X

3D Test Problem Results

Blocking Factor 2 4 8
Adaptive Levels 1 2 3 1 2 3 1 2 3
ILU Smoother
PCG 3.839 18.45 71.11 3.326 14.24 49.79 4.154 22.22 69.70
MG 2.156 9.432 40.46 1.704 6.140 24.02 2.146 7.410 21.68
MGPCG 1.884 6.295 19.05 1.747 5.220 14.63 1.999 6.007 17.53
ICRB Smoother
PCG 4.158 19.67 75.61 3.682 15.28 56.82 4.770 27.19 84.94
MG 2.227 9.916 41.31 1.910 6.958 30.35 2.490 10.10 28.47
MGPCG 2.354 7.083 19.36 2.263 5.950 16.96 2.686 7.559 20.33
GSRB Smoother
PCG 4.023 19.99 78.66 3.735 15.43 58.33 4.801 26.19 86.51
MG 2.145 9.708 41.06 1.860 7.086 31.98 2.485 10.10 29.68
MGPCG 2.331 7.149 20.20 2.241 6.191 17.67 2.571 8.001 20.19

3D Test Problem Speedup

Blocking Factor 2 4 8
Adaptive Levels 1 2 3 1 2 3 1 2 3
ILU 1.14X 1.50X 2.12X 0.98X 1.18X 1.64X 1.07X 1.23X 1.24X
ICRB 0.95X 1.40X 2.13X 0.84X 1.17X 1.79X 0.93X 1.34X 1.40X
GSRB 0.92X 1.36X 2.03X 0.83X 1.14X 1.81X 0.97X 1.26X 1.47X

3D Whale Problem Results

Blocking Factor 2 4 8
Adaptive Levels 1 2 3 1 2 3 1 2 3
ILU Smoother
PCG 32.33 126.5 468.1 33.69 122.0 528.6 47.32 198.3 759.9
MG 10.52 41.69 145.6 9.874 35.71 133.4 13.91 57.37 202.2
MGPCG 5.445 15.06 43.66 5.796 14.84 48.74 7.113 21.28 70.07
ICRB Smoother
PCG 40.15 171.9 636.1 42.80 160.6 705.6 68.93 269.2 1056
MG 14.93 64.01 226.1 14.61 61.08 226.1 24.02 102.5 371.9
MGPCG 7.606 19.93 56.83 8.794 19.45 62.45 10.49 28.93 94.08
GSRB Smoother
PCG 41.07 179.2 648.8 43.11 167.0 710.2 70.00 276.3 1078
MG 15.99 67.29 230.4 15.42 63.24 234.9 26.03 106.8 395.9
MGPCG 8.063 22.38 57.47 8.451 21.61 65.76 10.39 31.77 94.70

3D Whale Problem Speedup

Blocking Factor 2 4 8
Adaptive Levels 1 2 3 1 2 3 1 2 3
ILU 1.93X 2.77X 3.33X 1.70X 2.41X 2.74X 1.96X 2.70X 2.89X
ICRB 1.96X 3.21X 3.98X 1.66X 3.14X 3.62X 2.29X 3.54X 3.95X
GSRB 1.98X 3.01X 4.01X 1.82X 2.93X 3.57X 2.51X 3.36X 4.18X

With recent advances in GPU technology, parallel CFD codes are able to
be accelerated on distributed hybrid architectures with multiple cores
sharing a single GPU. We have done this for the NASA FUN3D code.

A.C. Duffy, D.P. Hammond, E.J. Nielsen. Production level CFD code
acceleration for hybrid many-core architectures. Submitted to Parallel
Computing, Under Revision.

GPU Advancements

Architecture Cores L1 Cache L2 Cache Memory Access Speed
G80 112 16 KB 1 128 KB 2 57.6 GB/s GDDR3

GT200 240 24 KB 1 256 KB 2 102 GB/s GDDR3
Fermi 448 48/16 KB 3 768 KB 144 GB/s GDDR5

GPU architecture evolution from G80, which approximately coincided
with the release of Intel’s quad core CPUs, to Fermi which coincided with
the release of Intel’s six core processors. GPU advancements over the last
few years have noticeably outpaced those of CPUs. Representative GPUs
are: G80-GeForce 8800 GT, GT200-Tesla C1060, Fermi-Tesla C2050.
1shared memory, 2 texture memory, 3Configurable L1/shared memory

GPU Accleration of the MG Smoothers

We have previously developed acclerated GSRB and ICRB smoothers
using the PGI Fortran compiler with accelerator directives.

The PGI compiler allows for simple code porting for GPUs

Directives are similar to those of OpenMP, the accelerator code will
be ignored if the compiler option is not used (e.g. when no
accelerators or when not using the PGI compiler)

Acts as a wrapper, code is converted to CUDA C

Jacobi method

Simplest smoother, easy to port to GPU.

Slow converging

Given x0, r = b − Ax0, x = x0

x = x + D−1r
r = b − Ax

Jacobi Code

PGI Fortran Code for Simple 1-D problem

!$acc region
do iterates=1,maxiterates

do i=is,ie
x(i)=(b(i)-L(i-1)x old(i-1)-U(i+1)x old(i+1))/DE(i)

end do
do i=is,ie

x old(i)=x(i)
end do

end do
!$acc end region

Symmetric-Gauss-Seidel

Symmetric Gauss Seidel smoothers lead to faster convergence
compared to Jacobi smoothers, but are not vectorizable in their
natural form.

A Red-Black ordering allows Gauss Seidel to be vectorized, simple ex.

2 -1 0 0 x1 2 0 -1 0 x1

-1 2 -1 0 x2 → 0 2 -1 -1 x3

0 -1 2 -1 x3 -1 -1 2 0 x2

0 0 -1 2 x4 0 -1 0 2 x4

Symmetric Red-Black GS

DR CT xR = rR
C DB xB rB

x∗R = (DR)−1rR

xB = (DB)−1(rB − Cx∗R)

xR = (DR)−1(rR − CT xB)

Symmetric Red-Black GS (cont)
(DR)−1 + (DR)−1CT (DB)−1C (DR)−1 −(DR)−1CT (DB)−1

M =
−(DB)−1C (DR)−1 (DB)−1

xn+1 = xn + M(r − Axn)

1. r∗ = r − Axn

2. xn+1 = xn + Mr∗

MG Smoothers - Incomplete Cholesky (IC)

IC factorizations are often used as the preconditioner themselves, but
here we use IC as a smoother for multigrid.

Fastest MG smoother

Factorization ensures M maintains same sparse structure as A

The standard IC preconditioner cannot be vectorized.

MG Smoothers - ICRB

We can again use a Red-Black ordering just as in the GSRB case here to vectorize
the IC algorithm following the method of Ortega∗, then the algorithm is the same
as for the GSRB case with DB replaced by (DB)∗.

DR CT → I 0 DR 0 I (DR)−1CT

C DB C (DR)−1 I 0 (DB)∗ 0 I

(DB)∗ = diagonal(DB − C (DR)−1CT)

*James Ortega, ”Introduction to Parallel and Vector Solution of Linear
Systems”, Springer, 1988.

GPU Acceleration Results and Discussion

Using the PGI Fortran compiler, the smoothers are limited to a 2X
speedup due to costly data transfer overhead. Switching to a CUDA
C implementation will allow us to store the A matrix coefficients
permanently on the GPU, and should provide for more substantial
speedup.

An iterative refinement technique has been employed to reduce the
residual error by 18 orders of magnitude in single precision, which is
optimal for GPU acceleration.

We plan to develop the new CUDA C implementation using a GPU
sharing model such as was done on the NASA FUN3D code. This
will allow the code to be accelerated by a multicore processor
(current capability) and a GPU simultaneously

Microfluidic T-Junction

Microfluidic T-Junction - COMSOL/4 Cores

comsol.avi
Media File (video/avi)

Microfluidic T-Junction

Simulation using data from Roper’s Lab

Microfluidic T-Junction

Simulation using data from Roper’s Lab

QUESTIONS?

	Governing Equations for two-phase flow
	Background and Related Work

	Mathematical Formulation
	An Improved Projection Algorithm for Adaptive Meshes
	Restriction and Prolongation Operators
	Convergence

	Results and Discussion
	GPU Acceleration
	Microfluids Gallery

